Design Calculation of Steel Shelter – AISC 360

Posted by:

|

On:

|

, ,

PURPOSE AND SCOPE

The scope of this document is to provide the calculations for the Analysis and Design of Steel Shelter.

The software used for structural analysis and design is STAAD Pro Connect Edition.

.A three-dimensional model of shelter structure is created in STAAD and all relevant loads are applied in accordance with ASCE 7-10 and member design is performed according to AISC-360-10.

In detailed design phase, appropriate design and detailing considerations as per AISC 341 shall be considered as necessary.

This document covers only sizing of primary steel members. The design of connections and sizing of secondary & tertiary steel members shall be performed in the detailed design phase.

REQUIRED REFERENCES

This section lists the practices, codes, standards, specifications, and publications that shall be used with this document. Unless otherwise specified herein, use the latest edition.

PROCESS INDUSTRY PRACTICES

PIP Description

PIP STC01015 Structural Design Criteria

INTERNATIONAL CODES

CODES Description

ASCE 7-10 Minimum Design Loads for Buildings and Other Structures

AISC 360-10 Specification for Structural Steel Buildings

AISC 341-10 Seismic Provisions for Structural Steel Buildings

REFERENCE LITERATURES

Reference Literature/ Design Guide Title

ASCE 41180 Wind Loads for Petrochemical and Other Industrial Facilities

ASCE 40262 Wind Loads and Anchor Bolt Design for Petrochemical Facilities

 

MATERIALS

All materials and structural steel components shall be in accordance with project specification “Design Specification for Steel Structures”.

Constant

Value

W-shapes, WT-shapes

Yield strength, (Fy in MPa)

ASTM A992/A992M

345

S-shapes, Channels, Angles

Yield strength, (Fy in MPa)

ASTM A36/36M

250

Elastic Modulus

E = 210,000 MPa

Density

7850 kg/m3

Poisson’s Ratio

ν = 0.3

Co-efficient of Thermal Expansion

α = 12 x 10-6 m/m ℃

STRUCTURE DESCRIPTION

The Geometry of Off-gas Compressor Shelter is considered as per General Plot Plan Layout The dimension as below;

  • Width of the structure is 15.00m;
  • Length is 36.0m;
  • Frame spacing is 6.0m;
  • Eave height 15.00m
  • Roof Slope is 1 in 10.

The shelter structure is enclosed with sheeting on all sides, except 3.0m opening above FGL. Shelter is considered to be supported on concrete pedestal of height 0.3 m from the ground.

Shelter consists of:

  • Gantry girder supporting 8 MT rated capacity crane.

Moment resisting frames in transverse direction, braced framing in longitudinal direction. Column Base supports are fixed in transverse direction & pinned in longitudinal direction.

3D View of Shelter-01

STAAD MODEL

Note:

Braces are considered as TRUSS members (pure Axial) in STAAD which is same as members with end moment releases.

Figure 4-2 Isometric View of Shelter with releases & support

NODE NUMBER

Node number along Grid A

Node number along Grid C

Node number along Grid 1

Node number along Grid 2

Node number – Roof Plan View

MEMBER PROPERTY

Figure Isometric View of Member Number

SL. No

Member No

Members

1

R1

HE160A

2

R2

HE160A

3

R3

L120X120X12 SD

4

R4

L90X90X10 SD

5

R5

HE500A

6

R6

HE600B

7

R7

HE450A

 

LOADS & LOAD COMBINATIONS

Load case No.

Load case

Loads

1

DS

DEAD LOAD (DS)

2

L1

LIVE LOAD(L1)

3

L2

CRANE IMPACT LOAD (L2)

4

LR

ROOF LIVE LOAD (LR)

5

WX1(+)

WIND LOAD (WX (+) CASE A Cpi = -0.18)

6

WX2(+)

WIND LOAD (WX (+) CASE B Cpi = 0.18)

7

WX1(-)

WIND LOAD (WX (-) CASE A Cpi = -0.18)

8

WX2(-)

WIND LOAD (WX (-) CASE B Cpi = 0.18)

9

WZ1(+)

WIND LOAD (WZ (+) CASE A Cpi = -0.18)

10

WZ2(+)

WIND LOAD (WZ (+) CASE B Cpi = 0.18)

11

WZ1(-)

WIND LOAD (WZ (-) CASE A Cpi = -0.18)

12

WZ2(-)

WIND LOAD (WZ (-) CASE B Cpi = 0.18)

13

EX

SEISMIC LOAD (EX)

14

EZ

SEISMIC LOAD (EZ)

15

EY

SEISMIC LOAD (EY)

16

TS1

SUSTAINED THERMAL LOAD (TS MAX)

17

TS2

SUSTAINED THERMAL LOAD (TS MIN)

 

Table Primary Load case

DEAD LOAD (DS)

Structural self-weight of modelled steel members is automatically generated in STAAD.

Structural self-weight of all steel members is calculated with a unit weight of steel as 78.5kN/m3 multiplied by a contingency factor of 1.2 to account for connection details

Fire proofing to the structural members (column, beams & vertical bracing) is considered upto elevation 10 m. The 50mm thick concrete fireproofing is considered in accordance with “Passive Fire Protection Technical Specification. The fireproof weight is calculated automatically in STAAD.

Dead Load On Roof

     

Self-weight of roof/wall sheet (assumed)

=

6.00

kg/m2

 

=

0.06

kN/m2

Self-weight of purlin and girts (UPN 200)

=

25.3

kg/m

 

=

0.25

kN/m

Assuming purlins are located at every 1.0m spacing

Area load due to purlin

=

0.25

kN/m2

Total dead load for sheeting

=

0.25+0.06

 
 

=

0.313

kN/m2

Considering 20% contingency for connections

     

Design dead load for sheeting

=

0.38

kN/m2

ROOF AREA

Contributing span (m)

Unit load (kN/m2)

Sheet load including Purlin weight (kN/m)

3

0.38

1.14

6

0.38

2.28

SIDE WALL

Contributing span (m)

Unit load (kN/m2)

Side sheeting load including Side runner (kN/m)

3

0.38

1.14

6

0.38

2.28

3.75

0.38

1.43

7.5

0.38

2.85

The Dead load of 2.5 kN/m shall be applied on longitudinal roof beams to account for roof ridge ventilation members.

Dead Load – Gantry Girder

Self weight of crane gantry girder

Self weight of supporting bracket beam

Gantry Girder

Supporting Bracket Beam

Total Force

Contributing span (m)

Unit load (kN/m)

Selfweight of crane gantry girder (kN)

Contributing span (m)

Unit load (kN/m)

Selfweight of Bracket Beam (kN)

TOTAL

Dead load, (kN)

Lever Arm (m)

Moment (kNm)

3

1.18

3.54

1

1.25

1.25

4.79

1

4.79

6

1.18

7.08

1

1.25

1.25

8.33

1

8.33

Crane Dead Load (CD)

Crane load is considered 8T lifting capacity (Assumed).

For the overall structural design, the critical crane load calculated is applied on all the frames. The Crane Loads are applied at EL (+)12.00m.

Design Load calculation is as follows.

Rated load capacity of crane W = 8000 kg = 80 kN

Span of crane = 15.00 m

Weight of crane bridge (INCLUDED OTHER WEIGHTS) Wc

= 4000 kg = 40 kN

Weight of hoist and trolley Wt = 800 kg = 8 kN

No of wheel on each side = 2

No’s

Wheel base = 3.15 m

Distance of the hook from grid-1 = 1 m

Distance of the hook from grid-3

Primary Load cases due to Crane operation:

= 1 m

Dead (CD) = vertical dead load of the crane + trolley weight

1) Wheel load due to crane bridge

(Crane bridge load / 2) / No. of Wheel on one side = ( 40 / 2 ) / 2

= 10 kN

2) Wheel load due to hoist and trolley 8 T

  1. When hook is near grid –A

Wheel load on grid -A = 3.73 kN = ( 8 x 14 / 15 ) / 2

Wheel load on grid -C = 0.27 kN = ( 8 x 1 / 15 ) / 2

Wheel Load

Bridge Load kN

Trolley Load kN

Dead (CD) = Bridge Load + Trolley Load kN

Wheel load along grid A

10.00

3.73

13.73

Wheel load along grid C

10.00

0.27

10.27

 

Figure Crane-Dead Load Max Staad reaction on Grid A column support

  • Maximum Wheel load = 24.540 kN (applied in staad for all gantry support columns)
  • Moment due to gantry supporting beam = 1m; 24.54 x 1m =24.540 kNm

 

Figure Crane-Dead Load Max Staad reaction on Grid C column support

  • Maximum Wheel load = 18.355 kN (applied in staad for all gantry support columns)
  • Moment due to gantry supporting beam = 1m; 18.355 x 1m = 18.355 kNm

Dead Load (DS)

LIVE LOAD (L1)

The Walk way of width 1.0m is assumed for crane accessibility at EL (+)12.00m. The live Load is considered as 2.87kN/m² (Section 4.1.3 of PIP STC01015).

Platform LL

 

=

2.87

kN/m2

Width

 

=

1

m

Contributing span (m)

Unit Load (kN/m2)

Live Load on Platform (kN)

 

3

2.87

8.61

6

2.87

17.22

Live Load (L1)

CRANE IMPACT LOAD (L2)

 

CRANE OPERATING (CO)

Wheel load due to Rated load Capacity = 80 Kn

Grid A Grid C

When hook is near grid –A

Wheel load on grid -A = ( 80 x 14 / 15 ) / 2 = 37.33 kN

Wheel load on grid -C = ( 80 x 1 / 15 ) / 2 = 2.67 kN

Wheel Load

Crane Operating (CO) kN

Wheel load along grid A

37.33

Wheel load along grid C

2.67

Crane-Operating Load Max reaction on Grid A column support

  • Maximum wheel load = 66.719 kN (applied in staad for all gantry support columns)
  • Moment due to gantry supporting beam = 1m; 66.719 x 1m =66.719 kNm

2.67 kN

2.67 kN

Crane-Operating Load Max reaction on Grid C column support

  • Maximum wheel load = 4.772 kN (applied in staad for all gantry support columns)
  • Moment due to gantry supporting beam = 1m; 4.772 x 1m =4.772 kNm

Structural Crane Operating Load (CO)

CRANE TRANSVERSE (CT)

As per ASCE 7-10, refer 4.9

Transverse (CT)

=

side thrust (transversal Impact load)

 

=

20% of the rated load capacity of the crane and the weight of the hoist and trolley (as per cl 4.9.4 of ASCE 7-10)

Wheel Load

Trolley Load

Crane Operating (CO)

Crane Transverse (CT) = 0.20*(trolley load+CO) kN

Wheel load along grid A

3.73

37.33

8.21

Wheel load along grid C

0.27

2.67

0.59

Crane-Side Thrust Load Max reaction on Grid A column support

Maximum wheel load = 14.674 kN (applied in staad laterally for all gantry support columns)

 

Crane-Side Thrust Load Max reaction on Grid C column support

Maximum wheel load = 1.055 kN (applied in staad laterally for all gantry support columns)

Figure 5-10 Structural Crane Side Thrust Load (CT)

CRANE LONGITUDINAL (CL)

As per ASCE 7-10, refer 4.9

Longitudinal (CL)

=

longitudinal traction (longitudinal Impact load)

 

=

10% of the maximum wheel load (= 0.1*(CD+CO)) (as per cl 4.9.5 of ASCE 7-10)

Wheel Load

Crane Dead (CD)

Crane Operating

(CO)

Crane Longitudinal (CL) = 0.10*(CD+CO) *No. of wheels on each side

Wheel load along grid A

13.73

37.33

5.1

Wheel load along grid C

10.27

2.67

1.29

Maximum reaction on Grid A = 10.21 kN (applied in staad longitudinally for critical support columns)

Maximum reaction on Grid C = 2.59 kN (applied in staad longitudinally for critical support columns)

Figure 5-11 Structural Crane Longitudinal Load (CL)

CRANE IMPACT (CI)

As per ASCE 7-10, refer 4.9

Impact (CI)

=

vertical impact

 

=

25% of the maximum vertical wheel load (= 0.25*(CD+CO)) (as per cl 4.9.3 of ASCE 7-10)

Wheel Load

Crane Dead (CD)

Crane Operating

(CO)

Crane Longitudinal (CL) = 0.20*(CD+CO)

Wheel load along grid-A

13.73

37.33

12.77

Wheel load along grid-C

10.26

2.67

3.23

Crane-Impact Load Max reaction on Grid 1 column support

  • Maximum wheel load = 5.773 kN (applied in staad for all gantry support columns)
  • Moment due to gantry supporting beam = 1m; 5.773 x 1m = 5.773 kNm

Figure 5-14 Structural Crane Impact Load (CI)

ROOF LIVE LOAD (LR)

Live load on Roof is considered as 0.96 kN/m2 (Refer Table 4.1, ASCE 7-10). Load is applied as UDL on the supporting main beams. The roof live load is reduced as per Section 4.8.2 of ASCE 7-10.

AT – Tributary area

= 6*15 = 90 m2

 

F – 0.12 * slope (in %)

= 0.12*10 = 1.2

 

R1 = 0.6

(AT > 55.74 m2)

 

R2 = 1

(F < 4)

Lr = 0.96*0.6 = 0.58 kN/m2

Contributing span (m)

Unit Load (kN/m2)

Live Load on Roof (kN/m)

3

0.58

1.74

6

0.58

3.48

Roof Live Load (LR)

WIND LOAD (WLX & WLZ)

Wind Parameters:

Structure Risk Category = III

(3sec-gust) = 85.70 m/s

(Return Period – 1700 years is considered for risk category III structures)

F, applied wind force = qz G Cf Af (Eq. 29.5-1), ASCE 7-10 qz – Velocity Pressure at height z above Ground.

G – Gust effect factor

Cf – Net force coefficient

Af – Projected area normal to wind

Velocity Pressure qz:

qz, (N/m2) = 0.613 Kz Kzt Kd V2 (Eq. 27.3-1), ASCE 7 -10

Kz, Velocity pressure exposure coefficient Kzt, Topographic factor

Kd, Wind directionality factor

V, Basic wind speed (3 sec – Gust) m/s Kz, Velocity pressure exposure coefficient

Height

Exposure

m

ft

C

D

D

normalized to 1.0 at

33 ft

4.57

15

0.85

1.03

0.87

6.10

20

0.9

1.08

0.92

7.62

25

0.94

1.12

0.95

9.14

30

0.98

1.16

0.98

12.19

40

1.04

1.22

1.03

15.24

50

1.09

1.27

1.08

18.29

60

1.13

1.31

1.11

21.34

70

1.17

1.34

1.14

24.38

80

1.21

1.38

1.17

Exposure Factor = D

Provided wind speed is representative of the Exposure Category-D, then there is no additional adjustment of pressure for Exposure Category

Kzt, Topographic factor

H, Height of hill or escarpment = 27 m (Grading level)

Lh, Distance upwind of crest at H/2 = 50 m (shore to escarpment = 100m)

x, Distance from crest to building site = 100 m (escarpment to bldg = 100m)

z, Ht above ground surface at bldg site = 42.75 m 27+ ht of shelter

Considering 2-D escarpments

μ, Horizontal attenuation factor = 4 Figure 26.8-1 (ASCE 7-10) – down wind

γ, Height attenuation factor = 2.5 Figure 26.8-1 (ASCE 7-10)

k1, (k1/(H/Lh) = 0.95

= 0.513

k2, = 0.5

k3, = 0.118

Kzt, . = 1.06

Kd, Wind directionality factor = 0.85 Table 26.6-1, ASCE 7-10

G – Gust effect factor = 0.85 26.9.1, ASCE 7-10

Level

Height above ground

“m”

Kz

Kzt

Kd

qp(z) (kN/m²)

G * qp(z) (kN/m²)

Level-1

0.00 –

5.00

0.884

1.060

0.850

3.587

3.05

Level-2

5.00 –

10.00

0.994

1.060

0.850

4.033

3.43

Level-3

10.00 –

15.00

1.076

1.060

0.850

4.366

3.71

Level-4

15.00 –

20.00

1.127

1.060

0.850

4.572

3.89

Level-5

20.00 –

25.00

1.174

1.060

0.850

4.763

4.05

Level-6

25.00 –

30.00

1.207

1.060

0.850

4.896

4.16

Level-7

30.00 –

40.00

1.272

1.060

0.850

5.162

4.39

Level-8

40.00 –

50.00

1.316

1.060

0.850

5.339

4.54

Table 5-3 : Wind pressure for height z

Cf – Net force coefficient

Ref: Sec. 4.1, ASCE-Report – Wind Loads and Anchor Bolt Design for Petrochemical Facilities For Structural member = = 1.8

Force on Pipe: F = qzxGxCfxAf

Wind Force along X direction: (No sheeting up to 3m)

z, (m)

Member Property

Member depth/ width (m)

Insulation width

wind expose depth / width

F in X Direction (kN/m) (Per frame)

3.00

HE600B

0.600

0.05

0.700

3.84

3.00

HE550A

0.300

0.05

0.400

2.2

3.00

L120X120X12

0.120

0.05

0.220

1.26

Wind Force along Z direction:

z, (m)

Member Property

Member depth/ width (m)

Insulation width

wind expose Depth / width

F in Z Direction (kN/m) (Per frame)

3.00

HE600B

0.300

0.05

0.40

2.2

3.00

HE550A

0.540

0.05

0.64

3.51

3.00

L120X120X12

0.120

0.05

0.220

1.26

Wind Load on Structure, Roof and Side Walls along X (+) direction-Load Case A

Wind Load on Structure, Roof and Side Walls along X (+) direction-Load Case B

Wind load on WX(-) calculations are same as wind load on WX(+), only direction change has been applied in staad.

WIND LOAD (WX(-) CASE A Cpi = -0.18)

Wind Load on Structure, Roof and Side Walls along X (-) direction-Load Case A

WIND LOAD (WX(-) CASE B Cpi = 0.18)

Wind Load on Structure, Roof and Side Walls along X (-) direction-Load Case B

Wind Load on Structure, Roof and Side Walls along Z (+) direction-Load Case A

Wind Load on Structure, Roof and Side Walls along Z (+) direction-Load Case B

Wind load on WZ(-) calculations are same as wind load on WZ(+), only direction change has been applied in staad.

WIND LOAD (WZ(-) CASE A Cpi = -0.18)

Wind Load on Structure, Roof and Side Walls along Z (-) direction-Load Case A

WIND LOAD (WZ(-) CASE B Cpi = 0.18)

Wind Load on Structure, Roof and Side Walls along Z (-) direction-Load Case B

 

SEISMIC LOAD (EX/EZ/EY)

For Time Period greater than Long Period Transition Period TL

T> TL Cs =(SD1*TL)/T2*(R/I) Eq.12.8-4/ASCE-7

Cs, Seismic response coefficient

=

(SD1*TL)

 
   

T2*(R/I)

Cs along frame in X-Dir

=

4.0280

Cs along frame in Z-Dir

Minimum Cs, Seismic response coefficient

=

=

0.7840

0.044SDS*I >

0.01

 

Eq.12.8-5/ASCE-7

 

=

0.0165

 

>

0.01

Cs, along frame in X dir

=

0.1280

>

 

0.1160

Cs, along frame in Z dir

=

0.0550

<

 

0.1080

Hence actual value of Cs

         

Cs, along frame in X dir

=

0.1160

     

Cs, along frame in Z dir

=

0.0550

     

Operating condition

The Seismic weight, includes the weight of structure, equipment loads and operating loads.

Redundancy Factor ρ

 

=

1

12.3.4.1/ASCE-7

Total weight (D)

 

=

2152

kN (from Staad)

Base shear along xdir

(2152×0.116)

=

249.63

kN (CsW)

Base shear along Zdir

(2152×0.055)

=

118.36

kN (CsW)

CALCULATION OF BASE SHEAR

The Seismic weight W, includes the weight of structure,equipment loads and operating load

W, Total weight

=

2152

kN

 

For X

V,Base shear along frame X Dir

=

249.63

kN

 

Enhanced Base shear including ρ & Ω0

=

249.63

kN

 

Comparison with STAAD

       

V,Base shear along frame X Dir

=

219.2

kN

 

For Z

V,Base shear along frame Z Dir

=

118.36

kN

 

Enhanced Base shear including ρ & Ω0

=

118.36

kN

 

Comparison with STAAD

       

V,Base shear along frame Z Dir

=

107

kN

 

Next Iteration

0.85 V, Base shear along Frame in X dir

=

212.19

kN

12.9.4/ ASCE 7

= 0.968 <1 Shear enhancement Not required

Next Iteration

 

0.85 V, Base shear along Frame in Z dir

=

100.61

kN

12.9.4/ ASCE 7

= 0.940 =<1 Shear enhancement Not required

Vertical load effect on structure

 

Ev, Vertical earthquake load effect

Vertical load effect on structure

=

=

0.2*SDS*D

129.12

kN

Eq.12.4-4/ASCE-7

Seismic load in X/Z/Y – Direction

THERMAL LOAD (Ts1 & Ts2)

Temperature load is considered as per Section 6.5 of “Basic Engineering Design Data (BEDD) Onshore

The thermal load for the structure is considered for the maximum temperature variation of +42°C and minimum temperature variation of 6°C from the ambient temperature.

Maximum Temperature : 42°C

Minimum Temperature : 6°C Mean Ambient Temperature : 26°C

TS1 max = 42 – 26 = +16 °C TS2 min = 6 – 26 = – 20 °C

SERVICIABILITY LOAD COMBINATION

S.no

Buildings and Open Frame Structures Specific Load Combination

Description

1

Ds + Ts

Dead Weight + Sustained Thermal (Sustained Load Case for Deflection or Settlement)

2

Ds + Ts + L

Dead Weight + Sustained Thermal + Live

3

N/A

 

4

Ds + Ts + 0.75 L + 0.75 Lr

Dead Weight + Sustained Thermal + Live + Roof Live

5

Ds + Ts + 0.6 W

Dead Weight + Sustained Thermal + Wind

Ds + Ts + E*

Dead Weight + Sustained Thermal + Earthquake

6a

Ds + Ts + 0.75 L + 0.75 (0.6 W) + 0.75 Lr

Dead Weight + Sustained Thermal + Live + Wind

+ Roof Live

6b

Ds + Do + Ts + 0.75 L + 0.75 E*

Dead Weight + Sustained Thermal + Live + Earthquake

7

0.6 (Ds) + Ts + 0.6 W

Dead Weight + Sustained Thermal + Wind (Wind Uplift Case)

8

0.6 (Ds) + Ts + E*

Dead Weight + Sustained Thermal + Earthquake (Earthquake Uplift Case)

*Deflection shall be computed using the strength level seismic forces as specified in Section 12.8 of ASCE 7-10 without reduction for allowable stress design.

Load

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Comb

DS

L1

L2

LR

WX1 (+)

WX2 (+)

WX1 (-)

WX2 (-)

WZ1 (+)

WZ2 (+)

WZ1 (-)

WZ2 (-)

EX

EZ

EY

TS 1

TS2

101

1

                           

1

 

102

1

                             

1

103

1

1

1

                       

1

 

104

1

1

1

                         

1

105

1

   

1

                     

1

 

106

1

   

1

                       

1

107

1

0.75

0.75

0.75

                     

1

 

108

1

0.75

0.75

0.75

                       

1

109

1

     

0.6

                   

1

 

110

1

       

0.6

                 

1

 

111

1

         

0.6

               

1

 

112

1

           

0.6

             

1

 

113

1

             

0.6

           

1

 

114

1

               

0.6

         

1

 

115

1

                 

0.6

       

1

 

116

1

                   

0.6

     

1

 

117

1

     

0.6

                     

1

118

1

       

0.6

                   

1

119

1

         

0.6

                 

1

120

1

           

0.6

               

1

121

1

             

0.6

             

1

122

1

               

0.6

           

1

123

1

                 

0.6

         

1

124

1

                   

0.6

       

1

125

1

                     

1

0.3

1

1

 

126

1

                     

0.3

1

1

1

 

127

1

                     

-1

-0.3

1

1

 

128

1

                     

-0.3

-1

1

1

 

129

1

                     

1

0.3

1

 

1

130

1

                     

0.3

1

1

 

1

131

1

                     

-1

-0.3

1

 

1

132

1

                     

-0.3

-1

1

 

1

133

1

0.75

 

0.75

0.45

                   

1

 

134

1

0.75

 

0.75

 

0.45

                 

1

 

135

1

0.75

 

0.75

   

0.45

               

1

 

136

1

0.75

 

0.75

     

0.45

             

1

 

137

1

0.75

 

0.75

       

0.45

           

1

 

138

1

0.75

 

0.75

         

0.45

         

1

 

139

1

0.75

 

0.75

           

0.45

       

1

 

140

1

0.75

 

0.75

             

0.45

     

1

 

141

1

0.75

 

0.75

0.45

                     

1

142

1

0.75

 

0.75

 

0.45

                   

1

143

1

0.75

 

0.75

   

0.45

                 

1

144

1

0.75

 

0.75

     

0.45

               

1

145

1

0.75

 

0.75

       

0.45

             

1

146

1

0.75

 

0.75

         

0.45

           

1

147

1

0.75

 

0.75

           

0.45

         

1

148

1

0.75

 

0.75

             

0.45

       

1

149

1

0.75

                   

0.75

0.23

0.75

1

 

150

1

0.75

                   

0.23

0.75

0.75

1

 

151

1

0.75

                   

-0.75

-0.23

0.75

1

 

152

1

0.75

                   

-0.23

-0.75

0.75

1

 

153

1

0.75

                   

0.75

0.23

0.75

 

1

154

1

0.75

                   

0.23

0.75

0.75

 

1

155

1

0.75

                   

-0.75

-0.23

0.75

 

1

156

1

0.75

                   

-0.23

-0.75

0.75

 

1

157

0.6

     

0.6

                   

1

 

158

0.6

       

0.6

                 

1

 

159

0.6

         

0.6

               

1

 

160

0.6

           

0.6

             

1

 

161

0.6

             

0.6

           

1

 

162

0.6

               

0.6

         

1

 

163

0.6

                 

0.6

       

1

 

164

0.6

                   

0.6

     

1

 

165

0.6

     

0.6

                     

1

166

0.6

       

0.6

                   

1

167

0.6

         

0.6

                 

1

168

0.6

           

0.6

               

1

169

0.6

             

0.6

             

1

170

0.6

               

0.6

           

1

171

0.6

                 

0.6

         

1

172

0.6

                   

0.6

       

1

173

0.6

                     

1

0.3

1

1

 

174

0.6

                     

0.3

1

1

1

 

175

0.6

                     

-1

-0.3

1

1

 

176

0.6

                     

-0.3

-1

1

1

 

177

0.6

                     

1

0.3

1

 

1

178

0.6

                     

0.3

1

1

 

1

179

0.6

                     

-1

-0.3

1

 

1

180

0.6

                     

-0.3

-1

1

 

1

STRENGTH LOAD COMBINATION

S.no

Buildings and Open Frame Structures Specific Load Combination

Description

1

1.4 Ds + 1.2 Ts

Dead Weight + Sustained Thermal

2

1.2 Ds + 1.2 Ts +1.6 L + 0.5 Lr

Dead Weight + Sustained Thermal + Live + Roof Live

3

1.2 Ds + 1.2 Ts + 1.6 Lr + L

Dead Weight + Sustained Thermal + Roof Live + Live

1.2 Ds + 1.2 Ts + 1.6 Lr + 0.5 W

Dead Weight + Sustained Thermal + Roof Live + Wind

4

1.2 Ds + 1.2 Ts + 1.0 W + L + 0.5 Lr

Dead Weight + Sustained Thermal + Wind + Live + Roof Live

5

1.2 Ds + 1.2 Ts + 1.0 E + 0.5 L

Dead Weight + Sustained Thermal + Earthquake + Live

6

0.9 Ds + 1.2 Ts + 1.0 W

Dead Weight + Sustained Thermal + Wind (Wind Uplift Case)

7

0.9 Ds + 1.2 Ts + 1.0 E

Dead Weight + Sustained Thermal + Earthquake (Earthquake Uplift Case)

Load

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Comb

DS

L1

L2

LR

WX1 (+)

WX2 (+)

WX1 (-)

WX2 (-)

WZ1 (+)

WZ2 (+)

WZ1 (-)

WZ2 (-)

EX

EZ

EY

TS1

TS2

201

1.4

                           

1.2

 

202

1.4

                             

1.2

203

1.2

1.6

1.6

0.5

                     

1.2

 

204

1.2

1.6

1.6

0.5

                       

1.2

205

1.2

1

1

1.6

                     

1.2

 

206

1.2

1

1

1.6

                       

1.2

207

1.2

   

1.6

0.5

                   

1.2

 

208

1.2

   

1.6

 

0.5

                 

1.2

 

209

1.2

   

1.6

   

0.5

               

1.2

 

210

1.2

   

1.6

     

0.5

             

1.2

 

211

1.2

   

1.6

       

0.5

           

1.2

 

212

1.2

   

1.6

         

0.5

         

1.2

 

213

1.2

   

1.6

           

0.5

       

1.2

 

214

1.2

   

1.6

             

0.5

     

1.2

 

215

1.2

   

1.6

0.5

                     

1.2

216

1.2

   

1.6

 

0.5

                   

1.2

217

1.2

   

1.6

   

0.5

                 

1.2

218

1.2

   

1.6

     

0.5

               

1.2

219

1.2

   

1.6

       

0.5

             

1.2

220

1.2

   

1.6

         

0.5

           

1.2

221

1.2

   

1.6

           

0.5

         

1.2

222

1.2

   

1.6

             

0.5

       

1.2

223

1.2

1

 

0.5

1

                   

1.2

 

224

1.2

1

 

0.5

 

1

                 

1.2

 

225

1.2

1

 

0.5

   

1

               

1.2

 

226

1.2

1

 

0.5

     

1

             

1.2

 

227

1.2

1

 

0.5

       

1

           

1.2

 

228

1.2

1

 

0.5

         

1

         

1.2

 

229

1.2

1

 

0.5

           

1

       

1.2

 

230

1.2

1

 

0.5

             

1

     

1.2

 

231

1.2

1

 

0.5

1

                     

1.2

232

1.2

1

 

0.5

 

1

                   

1.2

233

1.2

1

 

0.5

   

1

                 

1.2

234

1.2

1

 

0.5

     

1

               

1.2

235

1.2

1

 

0.5

       

1

             

1.2

236

1.2

1

 

0.5

         

1

           

1.2

237

1.2

1

 

0.5

           

1

         

1.2

238

1.2

1

 

0.5

             

1

       

1.2

239

1.2

1

                   

1

0.3

1

1.2

 

240

1.2

1

                   

0.3

1

1

1.2

 

241

1.2

1

                   

-1

-0.3

1

1.2

 

242

1.2

1

                   

-0.3

-1

1

1.2

 

243

1.2

1

                   

1

0.3

1

 

1.2

244

1.2

1

                   

0.3

1

1

 

1.2

245

1.2

1

                   

-1

-0.3

1

 

1.2

246

1.2

1

                   

-0.3

-1

1

 

1.2

247

0.9

     

1

                   

1.2

 

248

0.9

       

1

                 

1.2

 

249

0.9

         

1

               

1.2

 

250

0.9

           

1

             

1.2

 

251

0.9

             

1

           

1.2

 

252

0.9

               

1

         

1.2

 

253

0.9

                 

1

       

1.2

 

254

0.9

                   

1

     

1.2

 

255

0.9

     

1

                     

1.2

256

0.9

       

1

                   

1.2

257

0.9

         

1

                 

1.2

258

0.9

           

1

               

1.2

259

0.9

             

1

             

1.2

260

0.9

               

1

           

1.2

261

0.9

                 

1

         

1.2

262

0.9

                   

1

       

1.2

263

0.9

                     

1

0.3

1

1.2

 

264

0.9

                     

0.3

1

1

1.2

 

265

0.9

                     

-1

-0.3

1

1.2

 

266

0.9

                     

-0.3

-1

1

1.2

 

267

0.9

                     

1

0.3

1

 

1.2

268

0.9

                     

0.3

1

1

 

1.2

269

0.9

                     

-1

-0.3

1

 

1.2

270

0.9

                     

-0.3

-1

1

 

1.2

UNITY CHECK

Design of the structure is performed using STAAD software and ensured member design adequacy. The unity ratios of the members are presented below.

Strength Case:

Member Description

Beam No.

Member Property

Load Combination

UC Ratio

Allowable Ratio

Column

7

HE600B*

261

0.65

0.9

Cable End Column

200

HE500A*

233

0.68

0.9

Rafter Beam

43

HE450A*

262

0.65

0.9

Longitudinal Tie Beam

31

HE160A

231

0.59

0.9

Vertical Bracing

65

L120X120X12 SD

225

0.81

0.81

Horizontal Bracing

93

L90X90X10 SD

223

0.39

0.80

*Member Size are governed by Deflection criteria refer. Section 6.2.1

Unity Stress ratio

 

BASE REACTION

L/C

Horizontal

Vertical

Horizontal

Moment

Fx

kN

Fy

kN

Fz

kN

Mx

kN-m

My

kN-m

Mz

kN-m

1 DEAD LOAD (DS)

0

2269

0

20

0

0

2 LIVE LOAD(L1)

0

207

0

0

0

0

3 CRANE IMPACT LOAD (L2)

13

700

110

1196

0

1

4 ROOF LIVE LOAD (LR)

0

315

0

0

0

0

5 WIND LOAD (WX(+) CASE A CPI = -0.18)

-869

-1395

0

0

0

814

6 WIND LOAD (WX(+) CASE B CPI = 0.18)

-869

-2258

0

0

0

815

7 WIND LOAD (WX(-) CASE A CPI = -0.18)

869

-1395

0

0

0

-817

8 WIND LOAD (WX(-) CASE B CPI = 0.18)

869

-2258

0

0

0

-815

9 WIND LOAD (WZ(+) CASE A CPI = -0.18)

0

1601

-1770

-11093

0

1

10 WIND LOAD (WZ(+) CASE B CPI = 0.18)

0

2458

-1770

-11034

0

2

11 WIND LOAD (WZ(-) CASE A CPI = -0.18)

0

1601

1770

11093

0

1

12 WIND LOAD (WZ(-) CASE B CPI = 0.18)

0

2458

1770

11034

0

2

13 SEISMIC LOAD (EX)

224

913

7

33

0

40

14 SEISMIC LOAD (EZ)

5

67

113

948

0

0

15 SEISMIC LOAD (EY)

0

124

0

0

0

0

16 SUSTAINED THERMAL LOAD (TS MAX)

0

0

0

0

0

3

17 SUSTAINED THERMAL LOAD (TS MIN)

0

0

0

0

0

-3

: Base Reaction

Leave a Reply

Your email address will not be published. Required fields are marked *

Almost there!
We are confirming your order with